2014-11-26 22:13 来源:818期货学习网
标准方差波动率没有考虑一些具体情况,如股息的支付(或者拆股),仅是历史波动率粗糙的表征,但标准方差波动率是各种调整方法的基础,Parkinson估计量、Garman-Klass估计量和Yang-Zhang估计量等估计方法都是在标准方差波动率基础上进行了一定的改进。
Parkinson(1980)估计量采用了交易时段最高价和最低价两个价格数据,利用极差进行估计,该估计量只需要较少的时间周期就可以收敛于真实波动率。该估计量可以使价格波动区间在一定假设下比基于收盘价的估计量更能有效地估计回报波动率。Parkinson(1980)估计量提供了一个对日最高与最低价格经验性质的探究性分析,建立了一个基于最高价和最低价时间序列预测模型,对未来价格波动区间的量化分析提供了重要的参考。
Garman-Klass(1980)利用了交易时段最高价、最低价和收盘价三个价格数据进行估计,该估计量通过将估计量除以调整因子来纠正存在的偏差,以便得到方差的无偏估计。但Garman-Klass(1980)估计量无法解决价格序列中存在跳空开盘的情况。
Yang-Zhang(2000)推导出了适用于价格跳空开盘的估计量,本质上是各种估计量的加权平均。
上述讨论的几种波动率估计量,每类估计量都克服了上类估计量的不足,因此每次更迭都比上一次更优。但值得注意的是,在仿真和实际环境下进行测试表明,没有任何迹象显示哪一个估计量是最好的,因为所有的度量方法都包含一定的信息量。如果Parkinson波动率是50%,而标准方差波动率只有20%,至少可以认为真实波动率绝大部分是由较大的日内极差造成的,在决定对冲策略时,这些信息是很有用的。
预测波动率的常用模型
在实际交易层面,预测波动率是十分重要的,在了解了如何估计历史波动率后,以历史波动率作为初始预测值,根据定量资料和新得到的实际价格资料,不断调整修正,预测波动率就显得非常重要。
在预测波动率时,常见的模型有滑动窗口法、加权移动平均(EWMA)模型和广义自回归条件异方差(GARCH)模型。
1.滑动窗口法
滑动窗口法假设未来N天的波动率水平和过去N天的相同。因此只要我们估计出过去的历史波动率,就可以把历史波动率当作未来的预测波动率。但这种预测方法存在一个明显的问题,就是资产价格大幅变动会在波动率估计量的序列保持一段时间后突然消失,使得对波动率的预测存在较大的偏差。
2.指数加权移动平均(EWMA)模型
指数加权移动平均模型通过对最近一期的收益率的平方与前一期的方差进行加权平均,得到当前一期的方差。这种方法简单易用,便于理解,但不够灵敏。如果某一事件确实是异常事件,那么在预测未来波动率时,最好将这个异常数据删除,但指数加权移动模型假设事件的影响呈指数式递减,其实只是将这一问题简单回避掉了。
此外,该模型没有考虑最近的波动率估计量所处的市场环境,如指数加权移动模型忽略了高波动率后往往是低波动率的现象,对任何一天的预测值都是一样的,这与实际情况不太相符。
3.广义自回归条件异方差(GARCH)模型
广义自回归条件异方差(GARCH)模型族引入了预期回复的长期平均方差水平项,解决了EWMA无法实现波动率均值回归的问题。在实际期权交易中,常常用GARCH(1,1)模型预测波动率,该模型能够捕获一些方差随时间演变的因素,而且该模型能被大量简单的基于市场微观结构的论据所支持。
GARCH模型也存在一定的不足,如该模型不能解释资产收益和收益变化波动之间出现的负相关现象。GARCH(p,q)模型假定条件方差是滞后残差平方的函数,因此,残差的符号不影响波动。
但在实际交易和实证研究中发现,当利空消息出现时,即预期资产收益会下降时,波动率趋向增大;当利好消息出现时,波动率趋向减少。GARCH(p,q)模型不能解释该现象。此外,由于GARCH模型中正的和负的对冲对条件方差的影响是对称的,GARCH模型不能体现收益率条件方差波动的非对称性。
通过上述介绍,可以看出,没有哪一种度量方法是万能的,具体使用哪一种方法依赖于具体的环境。预测更像一门艺术,而对估计量、采样频率和预测方法的选择往往需要依靠经验。在适当的市场环境中,一些方法的效果要好于其他方法。但在判断波动率是否处于极端水平还是市场正常水平时,需要综合考虑整个市场的发展状况。
© Copyright 2014 818期货学习网 All Rights Reserved. 浙ICP备14000419号-1