(三)Whalley-Wilmott的渐进解
Whalley和Wilmott(1997)在假设交易成本相对于BSM公式中的期权价格而言很小的情况下,通过对最优系统的渐进分析,提出一个相对容易实行的对冲算法。他们采用的是Global-in-time方法,即通过提供一个决策规则,在每个时间瞬间监控股价并决定是否进行对冲头寸调整,解决因连续交易而带来的交易成本问题。
渐进分析的结果是,得到一个相对简单的用以计算无需对冲区域的公式。
(四)Zakamouline的双渐进解
Zakamouline(2006)研究了基于效用的对冲策略的特性,并提出了一个对冲策略公式,他能够保持Hodges-Neuberger模型最重要的特性。这个对冲带不是以BSM Delta为中心的,而是根据修正后的波动率计算出的BSM Delta为中心的。对于深度价外期权而言,对冲带的宽度也不等于0,这与Hodges-Neuberger模型的精确数值解的结果一致。
蒙特卡罗模拟介绍
蒙特卡洛(Monte Carlo)方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,以是否在计算机上使用为重要标志,因此,它虽然属于计算方法,但又与一般计算方法有很大区别。它将所求解的问题同一定的概率模型相联系,用电子计算机实现随机抽样或统计模拟,以获得问题的近似解。
金融市场上的金融创新、金融自由化和金融全球一体化促使了期权等主要金融衍生品的品种变得越来越多样化,同时各类客户对金融工具的个性化需求也越来越多,新型奇异衍生产品迅速发展起来,以期权定价理论为基础的实物期权方法也越来越受到重视,这些发展动向,使得金融市场迫切需要一种强有力的数学工具来解决金融衍生品的定价问题。
根据现有的金融资产定价理论,除了少数一些简单衍生证券的价格可以得到比较简单的理论计算公式以外,绝大部分期权价格则必须通过数值分析方法来加以确定。因此,数值分析方法就成为解决衍生证券定价问题的十分必要的手段。
利用蒙特卡洛模拟股票生成路径对冲
我们选取初始股票价格为240.45,无风险利率为3%,波动率为15%,交割价格为240.45,对其采取每天对冲一次,模拟一万次。下表为我们选取每日固定对冲一次的方法,不同的VAR得到的不同模拟对冲结果:
对其采取区间对冲,取值区间变换超过0.3时才对冲,模拟一万次。下表为我们选取区间对冲的方法,不同的VAR得到的不同模拟对冲结果
通过以上两个表格,我们得出通过区间对冲的成本明显高于每日对冲成本,分析其原因得知:虽然通过区间对冲降低了交易手续费,但是在对冲精度方面也降低了,而且交易成本占整个的对冲成本的比例很小,所以区间对冲在某些时候并不比每日对冲效果好。
总结
期权的非系统对冲方法(以固定时间间隔进行对冲,对冲至一个Delta带,根据标的资产价格变化的对冲)有各种缺陷。基于效用最大化的方法Hodges-Neuberger范式从理论上解决了对冲问题,但是在实践中难以实施,于是有了Whalley-Wilmott渐进方法和Zakamouline双渐进方法。本文详细介绍了Whalley-Wilmott渐进方法和Zakamouline双渐进方法的特性。并分别通过Monte Carlo模拟进行动态对冲模拟对比分析了三种方法(以固定时间间隔进行对冲和区间对冲)的对冲效果。实证分析结果表明,以固定时点对冲和区间对冲相比,不能够绝对分清方法优劣。数据显示,区间对冲能够有效减少交易成本,但降低了对冲精度,所以要根据具体情况采用什么方法对冲。
后续我们对带有交易成本Delta复制可以继续研究,分别对Whalley-Wilmott渐进方法和Zakamouline双渐进方法进行实证分析,比较各种复制方法的好坏,最终得到最优Delta对冲方法。